3.1.81 \(\int \frac {(d-c^2 d x^2)^{3/2} (a+b \text {ArcSin}(c x))}{x} \, dx\) [81]

Optimal. Leaf size=278 \[ -\frac {4 b c d x \sqrt {d-c^2 d x^2}}{3 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+d \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} (a+b \text {ArcSin}(c x))-\frac {2 d \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x)) \tanh ^{-1}\left (e^{i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}}+\frac {i b d \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,-e^{i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {i b d \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,e^{i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}} \]

[Out]

1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))+d*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)-4/3*b*c*d*x*(-c^2*d*x^2+d)
^(1/2)/(-c^2*x^2+1)^(1/2)+1/9*b*c^3*d*x^3*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)-2*d*(a+b*arcsin(c*x))*arctan
h(I*c*x+(-c^2*x^2+1)^(1/2))*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+I*b*d*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))
*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)-I*b*d*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))*(-c^2*d*x^2+d)^(1/2)/(-c^2*
x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {4787, 4783, 4803, 4268, 2317, 2438, 8} \begin {gather*} \frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} (a+b \text {ArcSin}(c x))+d \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))-\frac {2 d \sqrt {d-c^2 d x^2} \tanh ^{-1}\left (e^{i \text {ArcSin}(c x)}\right ) (a+b \text {ArcSin}(c x))}{\sqrt {1-c^2 x^2}}+\frac {i b d \sqrt {d-c^2 d x^2} \text {Li}_2\left (-e^{i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {i b d \sqrt {d-c^2 d x^2} \text {Li}_2\left (e^{i \text {ArcSin}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {4 b c d x \sqrt {d-c^2 d x^2}}{3 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/x,x]

[Out]

(-4*b*c*d*x*Sqrt[d - c^2*d*x^2])/(3*Sqrt[1 - c^2*x^2]) + (b*c^3*d*x^3*Sqrt[d - c^2*d*x^2])/(9*Sqrt[1 - c^2*x^2
]) + d*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]) + ((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/3 - (2*d*Sqrt[d -
 c^2*d*x^2]*(a + b*ArcSin[c*x])*ArcTanh[E^(I*ArcSin[c*x])])/Sqrt[1 - c^2*x^2] + (I*b*d*Sqrt[d - c^2*d*x^2]*Pol
yLog[2, -E^(I*ArcSin[c*x])])/Sqrt[1 - c^2*x^2] - (I*b*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, E^(I*ArcSin[c*x])])/Sqr
t[1 - c^2*x^2]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4268

Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*
x))]/f), x] + (-Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Dist[d*(m/f), Int[(c +
d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0]

Rule 4783

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]], Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))*Si
mp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b,
c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 4787

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcSin[c*x])^n/(f*(m + 2*p + 1))), x] + (Dist[2*d*(p/(m + 2*p + 1)), Int[(
f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Dist[b*c*(n/(f*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(
1 - c^2*x^2)^p], Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]

Rule 4803

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[(1/c^(m
+ 1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]], Subst[Int[(a + b*x)^n*Sin[x]^m, x], x, ArcSin[c*x]], x] /; Free
Q[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )}{x} \, dx &=\frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+d \int \frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{x} \, dx-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \left (1-c^2 x^2\right ) \, dx}{3 \sqrt {1-c^2 x^2}}\\ &=-\frac {b c d x \sqrt {d-c^2 d x^2}}{3 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{x \sqrt {1-c^2 x^2}} \, dx}{\sqrt {1-c^2 x^2}}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int 1 \, dx}{\sqrt {1-c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d-c^2 d x^2}}{3 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int (a+b x) \csc (x) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d-c^2 d x^2}}{3 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2 d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {\left (b d \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \log \left (1-e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}}+\frac {\left (b d \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \log \left (1+e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d-c^2 d x^2}}{3 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2 d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}+\frac {\left (i b d \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {\left (i b d \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}\\ &=-\frac {4 b c d x \sqrt {d-c^2 d x^2}}{3 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}+d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{3} \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )-\frac {2 d \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}+\frac {i b d \sqrt {d-c^2 d x^2} \text {Li}_2\left (-e^{i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}-\frac {i b d \sqrt {d-c^2 d x^2} \text {Li}_2\left (e^{i \sin ^{-1}(c x)}\right )}{\sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.68, size = 278, normalized size = 1.00 \begin {gather*} -\frac {1}{3} a d \left (-4+c^2 x^2\right ) \sqrt {d-c^2 d x^2}+a d^{3/2} \log (x)-a d^{3/2} \log \left (d+\sqrt {d} \sqrt {d-c^2 d x^2}\right )+\frac {b d \sqrt {d-c^2 d x^2} \left (-c x+\sqrt {1-c^2 x^2} \text {ArcSin}(c x)+\text {ArcSin}(c x) \log \left (1-e^{i \text {ArcSin}(c x)}\right )-\text {ArcSin}(c x) \log \left (1+e^{i \text {ArcSin}(c x)}\right )+i \text {PolyLog}\left (2,-e^{i \text {ArcSin}(c x)}\right )-i \text {PolyLog}\left (2,e^{i \text {ArcSin}(c x)}\right )\right )}{\sqrt {1-c^2 x^2}}-\frac {b d \sqrt {d-c^2 d x^2} \left (9 c x-3 \text {ArcSin}(c x) \left (3 \sqrt {1-c^2 x^2}+\cos (3 \text {ArcSin}(c x))\right )+\sin (3 \text {ArcSin}(c x))\right )}{36 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/x,x]

[Out]

-1/3*(a*d*(-4 + c^2*x^2)*Sqrt[d - c^2*d*x^2]) + a*d^(3/2)*Log[x] - a*d^(3/2)*Log[d + Sqrt[d]*Sqrt[d - c^2*d*x^
2]] + (b*d*Sqrt[d - c^2*d*x^2]*(-(c*x) + Sqrt[1 - c^2*x^2]*ArcSin[c*x] + ArcSin[c*x]*Log[1 - E^(I*ArcSin[c*x])
] - ArcSin[c*x]*Log[1 + E^(I*ArcSin[c*x])] + I*PolyLog[2, -E^(I*ArcSin[c*x])] - I*PolyLog[2, E^(I*ArcSin[c*x])
]))/Sqrt[1 - c^2*x^2] - (b*d*Sqrt[d - c^2*d*x^2]*(9*c*x - 3*ArcSin[c*x]*(3*Sqrt[1 - c^2*x^2] + Cos[3*ArcSin[c*
x]]) + Sin[3*ArcSin[c*x]]))/(36*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.19, size = 525, normalized size = 1.89

method result size
default \(\frac {\left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} a}{3}-a \,d^{\frac {3}{2}} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {-c^{2} d \,x^{2}+d}}{x}\right )+a \sqrt {-c^{2} d \,x^{2}+d}\, d -\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, d \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}}{9 \left (c^{2} x^{2}-1\right )}+\frac {4 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, d \sqrt {-c^{2} x^{2}+1}\, x c}{3 \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, d \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, d \arcsin \left (c x \right ) \ln \left (1-i c x -\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}-\frac {4 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, d \arcsin \left (c x \right )}{3 \left (c^{2} x^{2}-1\right )}+\frac {5 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, d \arcsin \left (c x \right ) x^{2} c^{2}}{3 \left (c^{2} x^{2}-1\right )}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, d \polylog \left (2, -i c x -\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, d \polylog \left (2, i c x +\sqrt {-c^{2} x^{2}+1}\right )}{c^{2} x^{2}-1}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, d \arcsin \left (c x \right ) x^{4} c^{4}}{3 \left (c^{2} x^{2}-1\right )}\) \(525\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x,x,method=_RETURNVERBOSE)

[Out]

1/3*(-c^2*d*x^2+d)^(3/2)*a-a*d^(3/2)*ln((2*d+2*d^(1/2)*(-c^2*d*x^2+d)^(1/2))/x)+a*(-c^2*d*x^2+d)^(1/2)*d-1/9*b
*(-d*(c^2*x^2-1))^(1/2)*d/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*x^3*c^3+4/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(c^2*x^2-1)*(-
c^2*x^2+1)^(1/2)*x*c+b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)*d*arcsin(c*x)*ln(1+I*c*x+(-c^2*x^
2+1)^(1/2))-b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)*d*arcsin(c*x)*ln(1-I*c*x-(-c^2*x^2+1)^(1/2
))-4/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(c^2*x^2-1)*arcsin(c*x)+5/3*b*(-d*(c^2*x^2-1))^(1/2)*d/(c^2*x^2-1)*arcsin(c*
x)*x^2*c^2-I*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)*d*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))+I*
b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/(c^2*x^2-1)*d*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))-1/3*b*(-d*(c^2*x
^2-1))^(1/2)*d/(c^2*x^2-1)*arcsin(c*x)*x^4*c^4

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x,x, algorithm="maxima")

[Out]

-b*sqrt(d)*integrate((c^2*d*x^2 - d)*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))/x
, x) - 1/3*(3*d^(3/2)*log(2*sqrt(-c^2*d*x^2 + d)*sqrt(d)/abs(x) + 2*d/abs(x)) - (-c^2*d*x^2 + d)^(3/2) - 3*sqr
t(-c^2*d*x^2 + d)*d)*a

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x,x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arcsin(c*x))*sqrt(-c^2*d*x^2 + d)/x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(3/2)*(a+b*asin(c*x))/x,x)

[Out]

Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*asin(c*x))/x, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2))/x,x)

[Out]

int(((a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2))/x, x)

________________________________________________________________________________________